28,002 research outputs found

    Collisional deexcitation of exotic hydrogen atoms in highly excited states. II. Cascade calculations

    Full text link
    The atomic cascades in mu-p and pbar-p atoms have been studied in detail using new results for the cross-sections of the scattering of highly excited exotic atoms from molecular hydrogen. The cascade calculations have been done with an updated version of the extended standard cascade model that computes the evolution in the kinetic energy from the beginning of the cascade. The resulting X-ray yields, kinetic energy distributions, and cascade times are compared with the experimental data.Comment: 13 pages, 23 figure

    Collisional deexcitation of exotic hydrogen atoms in highly excited states. I. Cross-sections

    Full text link
    The deexcitation of exotic hydrogen atoms in highly excited states in collisions with hydrogen molecules has been studied using the classical-trajectory Monte Carlo method. The Coulomb transitions with large change of principal quantum number n have been found to be the dominant collisional deexcitation mechanism at high n. The molecular structure of the hydrogen target is shown to be essential for the dominance of transitions with large \Delta n. The external Auger effect has been studied in the eikonal approximation. The resulting partial wave cross-sections are consistent with unitarity and provide a more reliable input for cascade calculations than the previously used Born approximation.Comment: 10 pages, 20 figure

    Angular distributions of scattered excited muonic hydrogen atoms

    Full text link
    Differential cross sections of the Coulomb deexcitation in the collisions of excited muonic hydrogen with the hydrogen atom have been studied for the first time. In the framework of the fully quantum-mechanical close-coupling approach both the differential cross sections for the nl→n′l′nl \to n'l' transitions and ll-averaged differential cross sections have been calculated for exotic atom in the initial states with the principle quantum number n=2−6n=2 - 6 at relative motion energies Ecm=0.01−15E_{\rm {cm}}=0.01 - 15 eV and at scattering angles θcm=0−180∘\theta_{\rm {cm}}=0 - 180^{\circ}. The vacuum polarization shifts of the nsns-states are taken into account. The calculated in the same approach differential cross sections of the elastic and Stark scattering are also presented. The main features of the calculated differential cross sections are discussed and a strong anisotropy of cross sections for the Coulomb deexcitation is predicted.Comment: 5 pages, 9 figure
    • …
    corecore